1.

Prove:tan θ + 1/ tan θ = sec θ cosec θ

Answer»

We have, 

L.H.S = tan θ + \(\frac{1}{tan\, θ}\) 

= \(\frac{(tan^2 θ\, +\, 1)}{tan θ}\)

= \(\frac{sec^2 \,θ }{tan \,θ}\) [∵ sec2 θ − tan2 θ = 1] 

= (\(\frac{1}{cos^2\, θ}\)) x \(\frac{1}{sinθ \over cos θ}​\) [∵ tan θ = \(\frac{sin \,θ }{cos \,θ}\)] 

= \(\frac{cos \,θ}{(sin θ \,\times\, cos^2\, θ)}\)

= \(\frac{1}{cos\, θ}\) x \(\frac{1}{sin\, θ}\)

= sec θ x cosec θ 

= sec θ cosec θ 

= R.H.S 

Hence Proved



Discussion

No Comment Found