Saved Bookmarks
| 1. |
Prove that a rectangular circumscribing a circle is a square |
| Answer» Diagram toh nhi kar sakti...Given: abcd is a rectangle circumscribing a circle.Ab = dcAd=bcYe do eq. One h.....reason (opposite sides of rectangle r equal)To PT: abcd is a sq.Proof: Tangents frm an external points to the circle are equal.Therefore,ap=as.......eq 2Bp=bq...........eq 3Dr=ds.......eq 3Cr=cq.........eq 4By adding these equationsAb+bp+dr+cr=as+bq+ds+cqAb+bp+dr+cr=as+ds+bq+cqAb+dc=ad+bcAb+ab=ad+ad(from eq 1)2ab=2adAb=adHence proved | |