1.

Prove that ratio of area of two similar triangle is equal to ratio of square of angle bisector

Answer» Given: {tex}\\triangle {/tex}ABC {tex} \\sim {/tex}{tex}\\triangle {/tex}DEFAM is the bisector of{tex}\\angle{/tex} BAC and is the corresponding bisector of {tex}\\angle{/tex} EDFTo prove:{tex}\\frac{{area\\vartriangle ABC}}{{area\\vartriangle DEF}} = \\frac{{A{M^2}}}{{D{N^2}}}{/tex}Proof: {tex}\\frac{{area\\vartriangle ABC}}{{area\\vartriangle DEF}} = \\frac{{A{B^2}}}{{D{E^2}}}{/tex}.......(i) [Area theorem]Now {tex}\\triangle {/tex}ABC {tex} \\sim {/tex}{tex}\\triangle {/tex}DEF{tex}\\Rightarrow {/tex}{tex}\\angle{/tex} A = {tex}\\angle{/tex} D {tex}\\Rightarrow {/tex}{tex}\\frac{1}{2}\\angle A = \\frac{1}{2}\\angle D{/tex}{tex}\\Rightarrow {/tex}{tex}\\angle{/tex}BAM = {tex}\\angle{/tex}EDNIn {tex}\\triangle {/tex}ABM and DEN {tex}\\angle{/tex} B = {tex}\\angle{/tex} E and {tex}\\angle{/tex} BAM= {tex}\\angle{/tex}EDN{tex}\\Rightarrow {/tex}{tex}\\triangle {/tex}ABM {tex} \\sim {/tex}{tex}\\triangle {/tex}DEN{tex}\\Rightarrow {/tex}{tex}\\frac{{AB}}{{DE}} = \\frac{{AM}}{{DN}} \\Rightarrow \\frac{{A{B^2}}}{{D{E^2}}} = \\frac{{A{M^2}}}{{D{N^2}}}{/tex}...................(ii){tex}\\Rightarrow {/tex}{tex}\\frac{{area\\vartriangle ABC}}{{area\\vartriangle DEF}} = \\frac{{A{M^2}}}{{D{N^2}}}{/tex} [From (i) and (ii)] Proved.


Discussion

No Comment Found