InterviewSolution
Saved Bookmarks
| 1. |
Prove that Sec power 4 theta - secsquare theta = tan power4 +tansquare theta |
|
Answer» Sec4A - Sec2A = tan\xa04A + tan\xa02ASec4A - Sec2A = Sec2A( Sec2A-1) = (1+tan2A) tan2A = tan\xa02A+ tan\xa04A Sec⁴A- sec² = sec²( sec² - 1 ) = sec²*tan² = 1/cos²*sin²/cos² = sin²*sec⁴ LHS.. Now, tan⁴+ tan² = tan² (tan²+1) = tan²*sec² = sin²/cos²*1/cos² = sin²*sec⁴ = RHS. Hence LHS=RHS. |
|