1.

Prove that sin 4 theta + cos 4 theta upon 1 minus 2 sin square theta cos squared theta equal to 1

Answer» Sin4°+cos4°÷1-2sin2°cos2°={sin2°}2+{cos2°}2÷1-2sin2°cos2° = (sin2°+cos2°)2-2(sin2°cos2°)÷1-2sin2°cos2°=1^2-2(sin2°cos2°)÷1-2sin^2°cos^2°=1. a^2+b^2=(a+b)^2-2ab


Discussion

No Comment Found