Saved Bookmarks
| 1. |
Prove that sum of squares of diagonals of parallelogram are equal to sum of squares of its sides |
|
Answer» Here ,a short ans for this question we have to prove that ab2+bc2+cd2+da2=ac2+bd2 since In parallelogram ABCD, AB = CD, BC = ADDraw perpendiculars from C and D on AB as shown.In right angled ΔAEC, AC2\xa0= AE2\xa0+ CE2\xa0[By Pythagoras theorem]⇒ AC2\xa0= (AB + BE)2\xa0+ CE2⇒ AC2\xa0= AB2\xa0+ BE2\xa0+ 2 AB × BE + CE2 → (1)From the figure CD = EF (Since CDFE is a rectangle)But CD= AB⇒ AB = CD = EFAlso CE = DF (Distance between two parallel lines)ΔAFD ≅ ΔBEC (RHS congruence rule)⇒ AF = BEConsider right angled ΔDFBBD2\xa0= BF2\xa0+ DF2\xa0[By Pythagoras theorem] = (EF – BE)2\xa0+ CE2 [Since DF = CE] = (AB – BE)2\xa0+ CE2 [Since EF = AB]\xa0⇒ BD2\xa0= AB2\xa0+ BE2\xa0– 2 AB × BE + CE2 → (2)Add (1) and (2), we getAC2\xa0+ BD2\xa0= (AB2\xa0+ BE2\xa0+ 2 AB × BE + CE2) + (AB2\xa0+ BE2\xa0– 2 AB × BE + CE2) = 2AB2\xa0+ 2BE2\xa0+ 2CE2 AC2\xa0+ BD2\xa0= 2AB2\xa0+ 2(BE2\xa0+ CE2) → (3)From right angled ΔBEC, BC2\xa0= BE2\xa0+ CE2\xa0[By Pythagoras theorem]Hence equation (3) becomes, AC2\xa0+ BD2\xa0= 2AB2\xa0+ 2BC2 = AB2\xa0+ AB2\xa0+ BC2\xa0+ BC2 = AB2\xa0+ CD2\xa0+ BC2\xa0+ AD2∴ AC2\xa0+ BD2\xa0= AB2\xa0+ BC2\xa0+ CD2\xa0+ AD2Thus the sum of the squares of the diagonals of a parallelogram is equal to the sum of the squares of its sides.Thank you? |
|