

InterviewSolution
Saved Bookmarks
1. |
Prove that the determinant `Delta =|{:(x,,sintheta,,cos theta),(-sin theta,,-x,,1),(cos theta,,1,,x):}|` is independent of `theta`. |
Answer» Expanding along the first row we get `Delta =|{:(x,,sin0,,cos 0),(-sin 0,,-x,,1),(cos 0,,1,,x):}|` `=x(-x^(2)-1) -sin 0( -x sin 0- cos 0)` ` + cos 0 (-sin 0 +x cos 0)` `=-x^(3) +x + x sin^(2)0 + sin 0 cos 0 -sin 0 cos + x cos^(2) 0` `= -x^(3) + x+ x(sin^(2) 0+ cos^(2)0 )` `= -x^(3) + 2x` Hence `Delta ` is independent of 0. |
|