1.

Prove that the semi-vertical angle of the right circular cone of givenvolume and least curved surface is `cot^(-1)(sqrt(2))dot`

Answer» `V=1/3pir^2h`
`h=(3V)/(pir^2)`
`CSA=pirl`
`=pirsqrt(h^2+r^2)`
`=pirsqrt((9V^2+pi^2r^6)/(pir^2)`
`CSA=sqrt((9V^2+pi^2r^6)/r`
Differentiate with respect to r
`d/(dr)(CSA)=(3pi^2r^6-9V^2-pi^2r^6)/(r^2sqrt(9V^2+pi^2r^6)=0`
`2pi^2r^6-9V^2=0`
`r^6=(9V^2)/(2pi^2)`
`r=(9/2)^(1/6)*(V/pi)^(1/3)`
`cottheta=B/P=r/h=r/((3V)/(pir^2))`
`=pi/(3V)*[(n/2)^(1/6)*(V/pi)^(1/3)]^3`
`tantheta=1/sqrt2`
`cottheta=sqrt2`
``theta=cot^(-1)sqrt2`.


Discussion

No Comment Found