InterviewSolution
Saved Bookmarks
| 1. |
Prove the following trigonometric identities:(secA-tanA)2 = \({\frac{1-sinA}{1+sinA}}\) |
|
Answer» (sec A - tan A)2 = \(\Big(\frac{1}{cosA}-\frac{sinA}{cosA}\Big)^2\) = \(\frac{(1-sinA)^2}{cos^2A}\) = \(\frac{(1-sinA)^2}{1-sin^2A}\) = \(\frac{(1-sinA)^2}{(1-sinA)(1+sinA)}\) = \(\frac{1-sinA}{1+sinA}\) Hence Proved. sec A = 1/cos A tan A = sin A/ cos A Thus, L.H.S=(1/cosA - sin A/cos A)2 =(1-sin A)2/cos2 A =(1-sin A)(1- sin A)/(1-sin2 A) By a2-b2=(a+b)(a-b) and sin2 A + cos2 A=1 =(1-sin A)/(1+sin A)=R.H.S(corrected) Hence, proved |
|