1.

Prove the following trigonometric identities:sin2 A cot2A + cos2A tan2A =1

Answer»

Given : sin2 A cot2A + cos2A tan2A =1

To prove : Above equality holds. Proof: Consider LHS, we know,

cot θ =  \(\frac{cosθ}{sinθ}\)   and  tanθ = \(\frac{sinθ}{cosθ}\)

using these  

sin2A cot2A + cos2A tan2A

= sin2A x \(\frac{cos^2A}{sin^2A}\)  + cos2\(\frac{sin^2A}{cos^2A}\)  

= cos2A sin2A

= 1

Which is equal to RHS. 

Hence Proved



Discussion

No Comment Found