1.

Shiw that (a-b)2,(a2+b2)and (a+b)2 are in AP

Answer» {tex}(a^2+b^2)-(a-b)^2=a^2+b^2-(a^2+b^2-2ab)=a^2+b^2-a^2-b^2+2ab=2ab{/tex}{tex}(a+b)^2-(a^2+b^2)=(a^2+b^2+2ab)-a^2-b^2=a^2+b^2+2ab-a^2-b^2=2ab{/tex}Since (a2+b2)-(a-b)2=(a+b)2-(a2+b2),(a-b)2, (a2+b2) and (a+b)2 are in AP.


Discussion

No Comment Found