

InterviewSolution
Saved Bookmarks
1. |
Show that `|{:(a-x,,c,,b),(c ,,b-x,,a),( b,, a,,c-x):}|=0` where `a+b+c ne0` |
Answer» Correct Answer - `x=a+b+c,ne sqrt((1)/(2)(a-b)^(2)+(b-c)(2)+(c-a)^(2))` Applying `C_(1) to C_(1) +C_(2)+C_(3)` we get `Delta=|{:(a+b+c-x,,c,,b),(a+b+c-x,,b-x,,a),(a+b+c-x,,a,,c-x):}|` `=(a+b+c-x) |{:(1,,c,,b),(1,,b-x,,a),(1,,a,,c-x):}|` Applying `R_(1) to R_(1)-R_(2),R_(2)toR_(2)-R_(3),` we get `Delta =(a+b+c-x) |{:(0,,c-b+x,,b-a),(0,,b-a-x,,a-c+x),(1,,a,,c-x):}|` `=(a+b+c -x){(x^(2)+x(a-b)+c-b)(a-c)` `+(x+a-b)(b-a)` `=(a+b+c-x){(x^(2)+x(a-b)+(c-b)(a-c)` `+x(b-a)-(a-b)^(2)}` `=(a+b+c-x)(x^(2)+ac-c^(2)-ab+bc-a^(2)-b^(2)+2ab)` `=(a+b+c-x)(x^(2)-a^(2)-b^(2)-c^(2)+ab+bc+ca)` `=(a+b+c-x)(x^(2)-(1)/(2){(a-b)^(2)+(b-c)^(2)+(c-a)^(2))})` Since `Delta =0` we have `x=a +b +c, +- sqrt((1)/(2)((a-b)^(2)+(b-c)^(2)+(c-a)^(2)))` |
|