1.

Show that ƒ(x) = x2 is continues at x = 2.

Answer»

Left Hand Limit: = \(\lim\limits_{x \to2^-} \)f(x) =  \(\lim\limits_{x \to2^-} \) x2 

= 4

Right Hand Limit: = \(\lim\limits_{x \to2^+} \)f(x) =  \(\lim\limits_{x \to2^+} \) x2 

= 4 

ƒ(2) = 4

Since,   \(\lim\limits_{x \to2} \) f(x) = f(2) 

f is continuous at x = 2.



Discussion

No Comment Found

Related InterviewSolutions