1.

Show that the function f(x)=|x-2| is continuous but not differentiable at x=2.

Answer» `f(x)=abs(x-2)={:{(x-2 ", " x ge 2),(-(x-2)", "x lt2):}`
`R.H.L=underset(xrarr2^+)(lim)f(x)=underset(hrarr0)limf(2+h)`
`=underset(xrarr0)(lim)f(2+h-2)=underset(hrarr0)limf(2+h)`
f(2)2-2=0
and `L.H.L=underset(xrarr2^-)(lim)f(x)=underset(hrarr0)limf(2-h)`
`=underset(hrarr0)(lim)-(2+h-2)=underset(hrarr0)limh(2-h)`
`therefore`R.H.L = L.H.L=f(2)
`therefore` f(x) is not differentialble at x=2.


Discussion

No Comment Found