

InterviewSolution
Saved Bookmarks
1. |
Show that the function `f(x)=x^3/2`is not differentiable at x=0. |
Answer» `f(x)=x^(3//2)` `R,f (0)=underset(hrarr0)lim f(0+h)-f(0))/(h)` `=underset(hrarr0)lim(h^(3//2)-0)/(h)=underset(hrarr0) limh^(1//2)=0` and L.f(0) L.f(0)`=underset(hrarr0)lim (f(0-h)-f(0))/((-h))` `=underset(hrarr0)lim(h^(3//2)-0)/(-h)` `=underset(hrarr0)lim((-h)^(3//2)-0)/(-h)` `=underset(hrarr)lim^(1//2)` which is imaginary . `therefore` L.f (0) does not exist Therefore f(x) is not differentiable at x=0. |
|