1.

सिद्ध कीजिये - `int_(0)^(oo)log(x+(1)/(x))(dx)/(1+x^(2))=pi log2`

Answer» माना ` x = tan t rArr t = tan^(-1) x rArr dt=(1)/(1+x^(2))dx`
तब `" "I=int_(0)^(oo)log(x+(1)/(x))(dx)/(1+x^(2))=int_(0)^(pi//2)log(tant+(1)/(tant))dt`
`=int_(0)^(pi//2)log((1)/(sin t cost))dt`
`=int_(0)^(pi//2)(log 1-log sin t-log cos t)dt`
`=- int_(0)^(pi//2)log sin t dt-int_(0)^(pi//2)log cos tdt`


Discussion

No Comment Found