1.

सिद्ध कीजिये कि `int_(0)^(pi//2)sin^(2)xdx=int_(0)^(pi//2)cos^(2)xdx=(pi)/(4)`

Answer» माना `I=int_(0)^(pi//2)sin^(2)xdx" …(1)"`
`=int_(0)^(pi//2)sin^(2)((pi)/(2-x))dx" [प्रगुण (4 ) से ]"`
`=int_(0)^(pi//2)cos^(2)xdx" ...(2)"`
समी० (1 ) व (2 ) का योग करने पर,
`I+I=2Iint_(0)^(pi//2)[sin^(2)x+cos^(2)x]dx`
`=int_(0)^(pi//2)1dx=[x]_(0)^(pi//2)`
`rArr" "2I=((pi)/(2)-0)=(pi)/(2)" "therefore" "I=(pi)/(4)`


Discussion

No Comment Found