1.

Sides ab and ac and median ad are properational to the sides of the

Answer» Given : In\xa0{tex}\\Delta A B C \\text { and } \\Delta P Q R{/tex} The AD and PM are their medians,such that\xa0{tex}\\frac { A B } { P Q } = \\frac { A D } { P M } = \\frac { A C } { P R }{/tex}To prove :\xa0{tex}\\Delta A B C \\sim \\Delta P Q R{/tex}Construction : Produce AD to E such that AD = DE and produce PM to N such that PM = MN. Join CE and RN.Proof : In\xa0{tex}\\Delta A B D \\text { and } \\Delta E D C{/tex}\xa0{tex}AD=DE{/tex}\xa0{tex}\\angle A D B = \\angle E D C{/tex}\xa0(vertically opposite angles){tex}BD=DC\\text{(as AD is a median)}{/tex}{tex}\\therefore \\quad \\Delta A B D \\equiv \\Delta E D C{/tex}\xa0(By SAS congruency)or,\xa0{tex}AB=CE{/tex} (By CPCT)Similarly,\xa0PQ = RN {tex}{/tex}{tex}\\frac { A B } { P Q } = \\frac { A D } { P M } = \\frac { A C } { P R }{/tex}\xa0(Given)or,\xa0{tex}\\frac { C E } { R N } = \\frac { 2 A D } { 2 P M } = \\frac { A C } { P R }{/tex}or\xa0{tex}\\frac{CE}{RN}=\\frac{AE}{PN}=\\frac{AC}{PR}{/tex}So\xa0{tex}∆ACE \\sim ∆PRN{/tex}\xa0{tex}\\angle 3=\\angle 4{/tex}Similarly\xa0{tex}\\angle 1=\\angle 2{/tex}\xa0{tex}\\angle 1+\\angle3=\\angle2+\\angle4{/tex}So\xa0{tex}\\angle A=\\angle P\\text{ and}{/tex}\xa0{tex}\\frac{AB}{PQ}=\\frac{AC}{PR}\\text{(given)} {/tex}Hence\xa0{tex}∆ABC\\sim ∆PQR{/tex}


Discussion

No Comment Found