Saved Bookmarks
| 1. |
(SinA +1-cosA)/(cosA-1+sinA )\xa0=1+sinA/cosA\xa0 |
| Answer» divide numerator and denomintor of LHS by\xa0cos A{tex}LHS=\\frac{tan A+sec A-1}{1-sec A+tanA} but 1=sec^2A-tan^2ALHS=\\frac{tan A+sec A-(sec^2A-tan^2A)}{1-sec A+tanA}=\\frac{tan A+sec A-(secA-tanA)(secA+tanA)}{1-sec A+tanA} from the numerator take (sec A+tan A)=\\frac{(tan A+sec A)(1-(secA+tanA)}{1-sec A+tanA} cancel (1-(secA+tanA)=tanA+secA=\\frac{sinA}{cosA}+\\fract{1}{cosA}=\\fract{sinA+1}{cosA{/tex} | |