1.

समाकलन `int_(0)^(1)(1-x)^(9)dx` का मान क्या है ?A. `(100)/(110)`B. `(10)/(111)`C. `(1)/(110)`D. `-(110)/(100)`

Answer» माना `I=int_(0)^(1)x(1-x)^(9)dx[becauseint_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx]`
`rArrI=int_(0)^(1)(1+0-x)(1-1-0+x)^(9)dx`
`rArrI=int_(0)^(1)(1-x)x^(9)dx=int_(0)^(1)(x^(9)-x^(10))dx`
`rArrI=[(x^(10))/(10)-(x^(11))/(11)]_(0)^(1)rArrI=[(1)/(10)-(1)/(11)]rArrI=(1)/(110)`
6. `int_(0)^(2a)f(x)dx={{:(2int_(0)^(a)f(x)dx",","यदि"f(2a-x)=f(x)),(0",","यदि"f(2a-x)=-f(x)):}`
7. `int_(-a)^(a)f(x)dx={{:(2int_(0)^(a)f(x)dx",","यदि"f(-x)=f(x)"सम फलन"),(0",","यदि"f(-x)=-f(x)"विषम फलन"):}`


Discussion

No Comment Found