1.

संकलनो का मान ज्ञात कीजिएः `int_(0)^(1) cos^(-1)x dx`

Answer» यहाँ `underset(0)overset(1)int cos^(-1)x dx`
माना `cos^(-1)x=t rArr x=cos t rArr dx=-sin t dt`
जब `x=0 rArr t=cos^(-1) 0=pi/2`
और `x=1 rArr t=cos^(-1) 1=0`
`therefore I=underset(pi//2)overset(0)int cos^(-1)xdx`
`=-underset(pi//2)overset(0)int t sin tdt`
`=[{-t cos t}_(pi//2)^(0)+underset(pi//2)overset(0)int cos t dt]`
`=-[0+{sin t}_(pi//2)^(-)]=-[0-1]=1`


Discussion

No Comment Found