InterviewSolution
Saved Bookmarks
| 1. |
संकलनो का मान ज्ञात कीजिएः। `int_(0)^(1) (tan^(-1)x)/(1+x^(2))dx` |
|
Answer» यहाँ `underset(0)overset(1)int (tan^(-1))/(1+x^(2))dx` माना `tan^(-1) x=t rArr (1)/(1+x^(2)) dx=dt` जब `x=0 rArr t=tan^(-1) 0=0` और `x=1 rArr t=tan^(-1) =pi/4` `therefore I=underset(0)overset(pi//4)int tdt=[(t^(2))/(2)]_(0)^(pi//4)` `rArr I=1/2[(pi/4)^2-0]` `=1/2xx(pi)^(2)/16=(pi^(2))/(32)` |
|