InterviewSolution
Saved Bookmarks
| 1. |
Solve for x: (1 – i) x + (1 + i) y = 1 – 3i. |
|
Answer» We have, (1 – i) x + (1 + i) y = 1 – 3i ⇒ x - ix+y+iy = 1- 3i ⇒ (x+y)+i(-x+y) = 1 -3i On equating the real and imaginary coefficients we get, ⇒ x+y = 1 (i) and –x+y = -3 (ii) From (i) we get x = 1 - y Substituting the value of x in (ii), we get -(1 - y)+y = -3 ⇒ -1+y+y = -3 ⇒ 2y = -3+1 ⇒ y = -1 ⇒ x = 1 - y = 1- (-1) = 2 Hence, x = 2 and y = -1 |
|