1.

Solve for x and y, when (√243)x ÷ 3y+1 = 1 and 81(4) – (x/2) – 27y = 01. 3, 42. 5, 43. 2, 44. 4, 3

Answer» Correct Answer - Option 3 : 2, 4

Given

(√243)x ÷ 3y+1 = 1, also 81(4) – (x/2) – 27y = 0

Formula Used

√a = (a)1/m, (am)n = am × n, am ÷ an = am – n

Calculation

(√243)x ÷ 3y+1 = 1

{(35)1/2}x ÷ 3y+1 = 1

(35/2)x ÷ 3y+1 = 1

35x/2 ÷ 3y+1 = 1

3(5x/2) – (y + 1) = 30

(5x/2) – (y + 1) = 0

(5x/2) – y – 1 = 0

5x – 2y – 2 = 0      ----(1)

Also, 814 – (x/2) – 27y = 0

(34)[4 - (x/2)] – (33)y = 0

316 – (4x/2) – 33y = 0

316 – 2x = 33y

16 – 2x = 3y

2x + 3y – 16 = 0      ----(2)

Multiply equation (1) by 3 and equation (2) by 2

15x – 6y – 6 = 0

Or, 15x – 6y = 6      ----(3)

4x + 6y – 32 = 0      ----(4)

Add equation (3) and (4)

(15x – 6y = 6) + (4x + 6y = 32)

⇒ 19x = 38

⇒ x = 2

Put x = 2 in equation (1)

5x – 2y – 2 = 0

⇒ 5(2) – 2y – 2 = 0

⇒ 10 – 2y – 2 = 0

⇒ 2y = 8

⇒ y = 8/2 = 4

⇒ x = 2, y = 4

The value of x and y is 2 and 4.



Discussion

No Comment Found