1.

Solve for x(in term of a. And. b):a/x-b + b/x-a. = 2

Answer» The given equation can be rewritten as{tex}\\frac { a ( x - a ) + b ( x - b ) } { ( x - b ) ( x - a ) } = 2{/tex}a(x -a) + b(x- b) = 2[x2 - (a + b)x + ab]ax- a2\xa0+ bx - b2 = 2x2- 2(a + b)x + 2ab2x2- 3(a + b)x + (a + b)2 = 02x2 - 2(a + b) x - (a + b)x + (a + b)2 = 0{tex}2x[x-(a+b)]-(a+b)[x-(a+b)]{/tex}[2x - (a + b)] [x - (a + b)] = 0{tex}x = a + b , \\frac { a + b } { 2 }{/tex}


Discussion

No Comment Found