InterviewSolution
Saved Bookmarks
| 1. |
Solve pair of linear equation : (a-b)x+(a+b)y=a2-2ab-b2 and second is:(a+b)(x+y)=a2+b2 |
| Answer» (a - b)x + (a + b)y = a2 - 2ab - b2 ...(1)(a + b)(x + y) = a2 + b2{tex}\\Rightarrow{/tex} (a + b)x + (a + b)y = a2 + b2 ....(2)Subtracting equation (2) from (1), we obtain:(a - b)x - (a + b)x = (a2 - 2ab - b2) - (a2 + b2){tex}\\Rightarrow{/tex} (a - b - a - b)x = -2ab - 2b2{tex}\\Rightarrow{/tex} -2bx = -2b(a + b){tex}\\Rightarrow{/tex} x = a + bSubstituting the value of x in equation (1), we obtain:(a - b) (a + b) + (a + b)y = a2 - 2ab - b2{tex}\\Rightarrow{/tex} a2 - b2 + (a + b)y = a2 - 2ab - b2{tex}\\Rightarrow{/tex} (a + b)y = -2ab{tex}\\Rightarrow y = \\frac{{ - 2ab}}{{a + b}}{/tex} | |