

InterviewSolution
Saved Bookmarks
1. |
Solve system of linear equations, using matrix method,`2x+y+z=1``x-2y-z=3/2``3y-5z=9` |
Answer» Given system of equations, 2x+y+z=1 `x-2y-z=3/2` 3y-5z=9 `rArr[{:(2,1,1),(1,-2,-1),(0,3,-5):}][{:(x),(y),(z):}]-[{:(1),(3/2),(z):}][{:(1),(3/2),(9):}]rArr AX=B` `A=[{:(2,1,1),(1,-2,-1),(0,3,-5):}] ` `rArr" "|A|=[{:(2,1,1),(1,-2,-1),(0,3,-5):}]` `therefore` A is invertible `"Now "A_(11)=13, A_(12)=5, A_(13)=3` `A_(21)=8, A_(22)=-10, A_(23)=-6` `A_(31)=1, A_(32)=3, A_(33)=-5` `therefore" adj A"=[{:(13,5,3),(8,-1,-6),(3,-6,-5):}]` From equation (1) `AX=B rArr X=A^(-1)B` `[{:(x),(y),(z):}]=1/34[{:(13,5,3),(8,-1,-6),(3,-6,-5):}][{:(1),(3/2),(9):}]` `1/34[{:(13,+12,+9),(5,-10,3),(3,-6,-5):}][{:(1),(1/2),(-3/2):}]` `therefore " "x=1, y=1/2, z=-3/2` |
|