

InterviewSolution
Saved Bookmarks
1. |
Solve the determinant using properties`|[a-b-c,2a,2a],[2b,b-c-a,2b],[2c,2c,c-a-b]| = (a+b+c)^3` |
Answer» Let the value of the given determinant be `Delta`. The, `Delta = |{:(a-b-c, " "2a, " "2a),(" "2b, b-c-a, " "2b),(" "2c, " "2c, c-a-b):}|` `= |{:(a+b+c, a+b+c, a+b+c),(" "2b, b-c-a, " "2b),(" "2c, " "2c, c-a-b):}| [R_(1) to (R_(1) + R_(2) + R_(3))]` `=(a+b+c)* |{:(1, " "1, " "1),(2b, b-c-a, " "2b),(2c, " "2c, c-a-b):}| ["taking (a+b+c) common from"R_(1)]` `=(a+b+c)* |{:(1, " "0, " "0),(2b, -(a+b+c), " "0),(2c, " "0, -(a+b+c)):}| [C_(2) to (C_(2)-C_(1))"and"C_(3) to (C_(3)-C_(1))]` `=(a+b+c)*1* |{:(-(a+b+c), " "0),(" "0, -(a+b+c)):}| ["expanded by"R_(1)]` `=(a+b+c) (a+b+c)^(2) = (a+b+c)^(3)` Hence, `Delta = (a+b+c)^(3)`. |
|