1.

Solve the following equations:\(\begin{vmatrix}\text{x} & -6 & -1 \\[0.3em]2 & -3\text{x} & \text {x} - 3 \\[0.3em]-3 &2\text{x} & \text{x}+ 2 \end{vmatrix}\) = 0|(x, -6, -1)(2, -3x, x-3)(-3, 2x, x + 2)| = 0

Answer»

Expanding with R1 

0= x(-3x2- 6x - 2x+ 6x) + 6(2x+4+3x-9) -1(4x - 9x) 

0=x (-5x2) + 6(5x - 5) -1(-5x) 

0= -5x+ 30x - 30 + 5x 

0= -5x+ 35x - 30 

x3- 7x + 6 = 0 

x- x - 6x + 6 = 0 

x(x2-1) - 6(x - 1) = 0 

x(x-1)(x+1) - 6(x - 1) = 0 

(x - 1)(x+ x - 6) = 0 

(x-1)(x+ 3x - 2x - 6) = 0 

(x-1)(x(x + 3) - 2(x + 3) =0 

(x-1)(x+3)(x-2) = 0 

Either x - 1 = 0 or x + 3 = 0 or x - 2 = 0 

∴ x = 1 or x = -3 or x = 2



Discussion

No Comment Found