InterviewSolution
Saved Bookmarks
| 1. |
Sum of the first 14 terms of an AP is 1505 and its first 10 term is 10.find its 25th term |
| Answer» Here a=10 and let d be the common difference. Then,S14=1505\xa0{tex}\\Rightarrow{/tex}\xa0{tex}\\frac{n}{2}{/tex}[2a+(n-1)d]=1505, where n=14 and a=10{tex}\\Rightarrow{/tex}\xa0{tex}\\frac{{14}}{2}{/tex}{tex} \\cdot {/tex}{tex}(20+13d)=1505\xa0{/tex}{tex}\\Rightarrow{/tex}\xa0{tex}(20+13d)={/tex}{tex}\\frac{{1505}}{7}{/tex}{tex}=215{/tex}{tex}\\Rightarrow{/tex}\xa0{tex}13d=195{/tex}\xa0{tex}\\Rightarrow{/tex}{tex}d=15.{/tex}Thus, a=10 and d=15.{tex}T_{25}\xa0= (a+24d)=(10+24\\times15)=370.{/tex}Hence, the 25th term is 370. | |