1.

Tan 20 tan 6o tan 80 is equal tan 60

Answer» LHS = tan 20° tan 40° tan 80°\xa0{tex}=\\frac{\\sin 20^{\\circ} \\sin 40^{\\circ} \\sin 80^{\\circ}}{\\cos 20^{\\circ} \\cos 40^{\\circ} \\cos 80^{\\circ}}{/tex}{tex}=\\frac{\\left(2 \\sin 20^{\\circ} \\sin 40^{\\circ}\\right) \\sin 80^{\\circ}}{\\left(2 \\cos 20^{\\circ} \\cos 40^{\\circ}\\right) \\cos 80^{\\circ}}{/tex}\xa0{tex}=\\frac{\\left(\\cos 20^{\\circ}-\\cos 60^{\\circ}\\right) \\sin 80^{\\circ}}{\\left(\\cos 60^{\\circ}+\\cos 20^{\\circ}\\right) \\cos 80^{\\circ}}{/tex}\xa0[{tex}\\because{/tex}\xa02 sin a sin b = cos (a-b) - cos (a+b), 2 cos a cos b = cos (a+b) + cos (a-b)]{tex}=\\frac{\\sin 80^{\\circ} \\cos 20^{\\circ}-(1 / 2) \\sin 80^{\\circ}}{(1 / 2) \\cos 80^{\\circ}+\\cos 80^{\\circ} \\cos 20^{\\circ}}{/tex}\xa0[\xa0{tex}\\because \\cos\\;60^o=\\frac12{/tex}]{tex}=\\frac{2 \\sin 80^{\\circ} \\cos 20^{\\circ}-\\sin 80^{\\circ}}{\\cos 80^{\\circ}+2 \\cos 80^{\\circ} \\cos 20^{\\circ}}{/tex}{tex}=\\frac{\\sin 100^{\\circ}+\\sin 60^{\\circ}-\\sin 80^{\\circ}}{\\cos 80^{\\circ}+\\cos 100^{\\circ}+\\cos 60^{\\circ}}{/tex}[{tex}\\because{/tex}\xa02 sin a cos b = sin (a+b) + sin (a-b)]{tex}=\\frac{\\sin \\left(180^{\\circ}-80^{\\circ}\\right)+\\sin 60^{\\circ}-\\sin 80^{\\circ}}{\\cos 80^{\\circ}+\\cos \\left(180^{\\circ}-80^{\\circ}\\right)+\\cos 60^{\\circ}}{/tex}{tex}=\\frac{\\sin 80^{\\circ}+\\sin 60^{\\circ}-\\sin 80^{\\circ}}{\\cos 80^{\\circ}-\\cos 80^{\\circ}+\\cos 60^{\\circ}}{/tex}\xa0{tex}=\\frac{\\sin 60^{\\circ}}{\\cos 60^{\\circ}}{/tex}\xa0= tan 60° = RHS


Discussion

No Comment Found