InterviewSolution
Saved Bookmarks
| 1. |
Tan^2thita -sin^2thita =tan^2thita×sin^2thita |
| Answer» If you mean,\xa0to prove (tan²θ - sin²θ) = tan²θ × sin²θ , then the answer will Be.....\xa0L.H.S = tan²θ - sin²θ\xa0= sin²θ/cos²θ - sin²θ\xa0= sin²θ [ 1/cos²θ - 1]\xa0[ we know, sec x = 1/cos x so, 1/cos²θ = sec²θ]\xa0= sin²θ [ sec²θ - 1]\xa0we also know that, sec² x - tan² x=1so,sec² θ - tan² θ=1or,sec² θ - 1 = tan² θthen, sin² θ [sec²θ - 1] = sin² θ × tan² θ = RHSHence, (tan² θ - sin² θ) = tan² θ × sin² θ. | |