InterviewSolution
Saved Bookmarks
| 1. |
Tan 7° tan23° tan60° tan67° tan83°= √3 |
|
Answer» SolutionverifiedVerified by TopprTo evaluate,tan7 ∘ tan23 ∘ tan60 ∘ tan67 ∘ tan83 ∘ We know that,tan(90−θ)=cotθ and cotθ= tanθ1\u200b tan7 ∘ =tan(90 ∘ −83 ∘ )=cot83 ∘ tan23 ∘ =tan(90 ∘ −67 ∘ )=cot67 ∘ ∴tan7 ∘ tan23 ∘ tan60 ∘ tan67 ∘ tan83 ∘ =cot83 ∘ cot67 ∘ tan60 ∘ tan67 ∘ tan83 ∘ = tan83 ∘ 1\u200b tan67 ∘ 1\u200b tan60 ∘ tan67 ∘ tan83 ∘ = tan83 ∘ tan67 ∘ tan60 ∘ tan67 ∘ tan83 ∘ \u200b =tan60 ∘ = 3\u200b Solve any question of Introduction to Trigonometry with:- Tan(90-theta)=cot theta Change tan 83, tan(90-83)=cot 7 Then also change tan 23, tan(90-23)=cot 67, We know tan 60=√3,Put the values Tan7.cot67.tan60.tan67.cot7 =√3We know tan theta x cot theta =1Tan7.cot7.tan67.cot67.√3=√3 1.1.√3=√3 √3=√3 LHS=RHS*(.) Symbolises mulplication hereI hope you understood my answerThank u |
|