1.

Tan A+CotA=2 than find the valu of Tan squarA- cot squareA

Answer» Given, tan A + cot A = 2We need to square\xa0both sides,\xa0(tan A + cot A)2 = (2)2{tex}\\Rightarrow{/tex}tan2A + cot2A + 2 tan A. cotA = 4\xa0{tex}[(a+b)^2=a^2+b^2+2ab]{/tex}{tex}\\Rightarrow{/tex}tan2A + cot2A + 2 tan A{tex}\\times \\frac { 1 } { \\tan A }{/tex}= 4{tex}\\Rightarrow{/tex}tan2A + cot2A + 2 = 4{tex}\\Rightarrow{/tex}tan2A + cot2A = 4 - 2 =\xa02Therefore the value of\xa0tan2 A + cot2 A = 2


Discussion

No Comment Found