1.

Tan A + cotA = 7 then find the value of tan^2 A + cot^A

Answer» So, the value of tan^2 + cot^2 = 47.
Tan A + cot A = 7 => (tan A + cotA)^2 = 49 (squaring on both sides) => tan^2A + cot^2A + 2(tanA × cotA) = 49........(1) . Now, as we know that, tanA× cotA= 1 . So, put the value of tanA × cotA in (1), we get, tan^2A + cot^2A + 2 = 49 => tan^2A + cot^2A = 47.
47


Discussion

No Comment Found