1.

tan A + sec A -1÷tan A-secA+1=1+sinA÷cosA

Answer» Proof:LHS=(tanA +secA) - (sec2A - tan2A) / tanA + 1 - secA as sec2A - tan2A=1=(tanA+ secA) (1 - (secA - tanA))/tanA + 1 - secA=(tanA +secA) (1 - secA + tanA) /\xa0(1 - secA+tanA )=sec A + tan A=1/cosA + sinA/cosA\xa0=(1 + sinA) / cosA =RHS\xa0\xa0
It is in this app itself. It is in the exercise 8.3 of exemplar problems of chapter intro to trigonometry
Prove this


Discussion

No Comment Found