1.

The 19th term of a.p is equal to three times its 6th term is 19 find the a.p

Answer» Let the first term of the A.P. be \'a\'.and the common difference be \'d\'.19th term of the A.P., t19 = a + (19 - 1)d = a + 18d6th term of the A.P., t6 = a + (6 - 1)d = a + 5d9th term of the A.P., t9 = a + (9 - 1)d = a + 8dt19 = 3t6{tex}\\Rightarrow{/tex}a + 18d = 3(a + 5d){tex}\\Rightarrow{/tex}a + 18d = 3a\xa0+ 15d{tex}\\Rightarrow{/tex}18d - 15d = 3a - a{tex}\\Rightarrow{/tex}3d = 2a{tex}\\therefore \\mathrm { a } = \\frac { 3 \\mathrm { d } } { 2 }{/tex}t9 = 19{tex}\\Rightarrow \\frac { 3 \\mathrm { d } } { 2 } + 8 \\mathrm { d } = 19{/tex}{tex}\\Rightarrow \\frac { 3 d + 16 d } { 2 } = 19{/tex}{tex}\\Rightarrow \\frac { 19 \\mathrm { d } } { 2 } = 19{/tex}{tex}\\Rightarrow{/tex}\xa0d = 2{tex}\\Rightarrow{/tex}a = 3t2\xa0= 3 + (2 - 1)2 = 5t3\xa0= 3 + (3 - 1)2 = 7The series will be 3, 5, 7......


Discussion

No Comment Found