

InterviewSolution
Saved Bookmarks
1. |
the derivative of `sin(log x)` is |
Answer» Let `y= "sin" (log x)` `implies(dy)/(dx)=(d)/(dx)"sin"("log"x)` `=(1)/("log"x)(d)/(dx)("log"x)` `=cos(log x)(d)/(dx)log x=("cos"(log x))/(x)` `implies(d^(2)y)/(dx^(2))=(d)/(dx)[("cos"(log x))/(x)]` `=(x(d)/(dx)"cos"(log x)-"cos"(log x)(d)/(dx)x)/(x^(2))` `=(x{-"sin"(log x)}*(1)/(x)-"cos"(log x))/(x^(2))` `= -[("sin"(log x) +cos(log x))/(x^(2))]` |
|