1.

The distance between the points of co-ordinates (2,3) and (4,1) is

Answer» We know\xa0Distance formula =\xa0{tex}\\sqrt {(x_2-x_1)^2 + (y_2-y_1)^2}{/tex}So,\xa0={tex}\\sqrt {(4-2)^2 + (1-3)^2}{/tex}=\xa0{tex}\\sqrt {4+4} = 2\\sqrt 2{/tex}
Distance between two coordinates = {tex}\\sqrt {{{\\left( {{x_2} - {x_1}} \\right)}^2} + {{\\left( {{y_2} - {y_1}} \\right)}^2}} {/tex}Given: {tex}\\left( {{x_1},{x_2}} \\right) = \\left( {2,3} \\right){/tex}\xa0and {tex}\\left( {{y_1},{y_2}} \\right) = \\left( {4,1} \\right){/tex}Then, Distance = {tex}\\sqrt {{{\\left( {4 - 2} \\right)}^2} + {{\\left( {1 - 3} \\right)}^2}} {/tex}\xa0= {tex}\\sqrt {{{\\left( 2 \\right)}^2} + {{\\left( { - 2} \\right)}^2}} {/tex} = {tex}\\sqrt {4 + 4} {/tex}\xa0= {tex}2\\sqrt 2 {/tex}\xa0units


Discussion

No Comment Found