

InterviewSolution
Saved Bookmarks
1. |
The domain of the derivative of the function: `f(x)={{:(,tan^(-1)x,|x| le1),(,(1)/(2)(|x|-1),|x|gt1):}`A. `R-{0}`B. `R-{1}`C. `4-{-1}`D. `R-{-1,1}` |
Answer» Correct Answer - D We have `f(x)={{:(,(1)/(2)(-x-1),x lt -1),(,tan^(-1)x,-1lexle1),(,(1)/(2)(x-1),x gt1):}` We observe that `underset(x to -1^(-))lim f(x)=underset(x to -1^(-))lim (1)/(2)(-x-1)=0` `underset(x to -1^(-))lim f(x)=underset(x to -1^(+))lim tan^(-1)x=tan^(-1)=-pi//4` Clearly, `underset(x to -1^(-))lim f(x) ne underset(x to -1^(+))lim f(x)` So, f(x) is not continuous at x=-1 Similarly, f(x) is not continuous at x=1 Consequenctly f(x) is not differentiable at `x=pm1` At all other points f(x) is differentiable. |
|