InterviewSolution
Saved Bookmarks
| 1. |
The graphs of the equations 3x - 20y - 2 = 0 and 11x - 5y + 61 = 0 intersect at P(a, b). What is the value of (a2 + b2 - ab)/(a2 - b2 + ab)?1. \(\frac{41}{31}\)2. \(\frac{31}{41}\)3. \(\frac{37}{35}\)4. \(\frac{5}{7}\) |
|
Answer» Correct Answer - Option 2 : \(\frac{31}{41}\) GIVEN: 3x - 20y - 2 = 0 and 11x - 5y + 61 = 0 CALCULATION: 3x - 20y - 2 = 0 .......(1) ⇒ (11x - 5y + 61 = 0) × 4 ......(2) On subtracting these two equation ⇒ 41x = - 246 ⇒ x = - 6 putting the value of x = - 6 in any of the two equation, we will get ⇒ y = -1 both the equations intersect each other at point P(a,b) = P(x. y) ⇒ a = -6 and b = -1 ⇒ (a2 + b2 - ab)/(a2 - b2 + ab) = (36 + 1 - 6)/(36 - 1 + 6) ⇒ 31/41 ∴ (a2 + b2 - ab)/(a2 - b2 + ab) = 31/41 |
|