1.

The greatest value of n for which the determinant `Delta = |(1,1,1),(.^(n)C_(1),.^(n+3)C_(1),.^(n+6)C_(1)),(.^(n)C_(2),.^(n+3)C_(2),.^(n+6)C_(2))|` is divisible by `3^(n)`, isA. 7B. 5C. 3D. 1

Answer» Correct Answer - C
We have,
`Delta = (1)/(2) |(1,1,1),(n,n +3,n +6),(n(n-1),(n+2) (n+3),(n+5) (n +6))|`
`rArr Delta = (1)/(2) |(1,0,0),(n,3,6),(n(n-1),6n + 6,12n + 30)|`
`rArr Delta = 9 |(1,0,0),(n,1,1),(n(n-1),2(n +1),2n +5)| = 27`
Clearly, `Delta = 27` is divisible by 3, `3^(2) and 3^(3)`. Hence, n = 3


Discussion

No Comment Found