1.

The product of two successive integral multiples by5is300 determine the multiple

Answer» Let the successive multiples of 5 be 5x and 5x + 5. Then according to question we have,\xa05x {tex}\\times{/tex} (5x + 5) = 300{tex}\\Rightarrow{/tex}\xa025x2 + 25x = 300{tex}\\Rightarrow{/tex}25x2 + 25x - 300 = 0{tex}\\Rightarrow{/tex}25(x2 + x - 12) = 0{tex}\\Rightarrow{/tex}x2 + x - 12 = 0Solve by factorization method we have,x2 + 4x - 3x - 12 = 0{tex}\\Rightarrow{/tex}x(x + 4) - 3(x + 4) = 0{tex}\\Rightarrow{/tex}(x + 4)(x - 3) = 0Therefore, either x = -4 or x = 3 If x = -4, we have 5x = 5 {tex}\\times{/tex} (-4) = -20 and 5x + 5 = 5 {tex}\\times{/tex} (-4) + 5 = -15 Aslo If x = 3, we have 5x = 5 {tex}\\times{/tex} 3 = 15 and 5x + 5 = 5 {tex}\\times{/tex} 3 + 5 = 20 Hence, the required multiples of 5 are 15, 20. or\xa0-20, -15


Discussion

No Comment Found