1.

The roots of the equation a²b²x²-(4b⁴-3a⁴)x-12a²b²=0

Answer» A²b²x² - (4b⁴ - 3a⁴)x - 12a²b² = 0⇒a²b²x² - 4b⁴x + 3a⁴x - 12a²b² = 0⇒b²x(a²x - 4b²) + 3a²(a²x - 4b²) = 0⇒(b²x + 3a²)(a²x - 4b²) = 0⇒x = 4b²/a², -3a²/b²now, using quadratic formula ,x = {(4b⁴ - 3b⁴) ± √{(4b⁴ -3a⁴)²+48(a²b²)²}}/2a²b²= {(4b⁴ - 3a⁴) ± √{(4b⁴ + 3a⁴)²}}/2a²b² [ use formula, (x-y)²+4xy=(x+y)²]= {4b⁴ - 3a⁴ ± (4b⁴ + 3a⁴)}/2a²b²= 4b²/a², -3a²/b²LE BHAI


Discussion

No Comment Found