InterviewSolution
Saved Bookmarks
| 1. |
The set of real values of `x` satisfying the equation`|x-1|^(log_3(x^2)-2log_x(9))=(x-1)^7`A. `1/sqrt3`B. 1C. 2D. 81 |
|
Answer» Correct Answer - C::D `|x-1|^(log_(3)x^(2)-2log_(x)9*)= (x-1)^(7)` Since L.H.S. ` gt 0." So, "x gt 1` ` :. (x-1)^(log_(3)x^(2)-2 log_(x)9)=(x-1)^(7)` `rArr x - 1 = 1 or log_(3)x^(2) - 2log_(x)9=7` ` rArr x = 2 or 2 log_(3) x - 4 1/(log_(3)x) - 7 = 0` ` rArr x = 2 or 2(log_(3)x)^(2) - 7 log_(3)x-4 = 0` ` rArr x = 2 or log _(3) x =- 1//2, 4` ` rArr x = 2 or x = 3^(-1//2) , 3^(4)` ` rArr x = 2, 81` |
|