InterviewSolution
 Saved Bookmarks
    				| 1. | 
                                    The smallest integral x satisfying the inequality `(1-log_(4)x)/(1+log_(2)x)le (1)/(2)x is.A. `sqrt(2)`B. 2C. 3D. 4 | 
                            
| 
                                   
Answer» Correct Answer - B Let `log_(2)x=t` `therefore (1-(t//2))/(1+t)le(1)/(2)` `rArr (2-t)/(1+t)le 1` `rArr (2-t)/(1+t)-1le 0` `rArr (2t-1)/(t+1)ge 0` `rArr t lt -1` or `t ge (1)/(2)` `rArr log_(2)x gt-1` or `log_(2)x ge (1)/(2)` `rArr 0 lt x lt (1)/(2)` or `x ge sqrt(2)` `rArr` smallest integer is 2  | 
                            |