1.

The smallest integral x satisfying the inequality `(1-log_(4)x)/(1+log_(2)x)le (1)/(2)x is.A. `sqrt(2)`B. 2C. 3D. 4

Answer» Correct Answer - B
Let `log_(2)x=t`
`therefore (1-(t//2))/(1+t)le(1)/(2)`
`rArr (2-t)/(1+t)le 1`
`rArr (2-t)/(1+t)-1le 0`
`rArr (2t-1)/(t+1)ge 0`
`rArr t lt -1` or `t ge (1)/(2)`
`rArr log_(2)x gt-1` or `log_(2)x ge (1)/(2)`
`rArr 0 lt x lt (1)/(2)` or `x ge sqrt(2)`
`rArr` smallest integer is 2


Discussion

No Comment Found