1.

The value of x satisfying `5^logx-3^(logx-1)=3^(logx+1)-5^(logx - 1)` , where the base of logarithm is 10 is not : 67 divisible by

Answer» Correct Answer - 100
`5^(log x)-3^(log x-1)=3^(log x+1)-5^(log x-1)`
`rArr 5^(log x)-3^(log x-1)=3^(log x+1)`
`rArr 5^(log x)+5^(log x-1)=3^(log x+1)+3^(log x-1)`
`rArr 5^(log x)+(5^(log x))/(5)=3.3^(log x)+(3^(log x))/(3)`
`rArr (6.5^(log x))/(5)=(10.3^(log x))/(3)`
`rArr ((3)/(5))^(log x)=((3)/(5))^(2)`
`rArr log_(10)x=2`
`rArr x =100`


Discussion

No Comment Found