InterviewSolution
Saved Bookmarks
| 1. |
The smallest value of x satisfying the equation √3 (cot x + tan x) = 4 is A. \(\frac{2π}3\)B. \(\frac{π}3\)C. \(\frac{π}6\)D. \(\frac{π}{12}\) |
|
Answer» \(\sqrt3(\frac{1}{tanx}+tanx)\) = 4 \(\sqrt3(\frac{1+tan^2x}{tanx})\) = 4 √3+√3 tan2x = 4 tan x √3 tan2x - 4 tan x+√3 = 0 Therefore tan = √3 or tanx = \(\frac{1}{\sqrt3}\) Therefore x = \(\frac{π}3\) or \(\frac{π}6\) But here the smallest angle is \(\frac{π}6\) Option C |
|