

InterviewSolution
Saved Bookmarks
1. |
the sum of values of p for which the equations x+y+z=1x+2y +4z=p and x+4y +10z =`p^(2)` have a solution is `"____"` |
Answer» Correct Answer - 3 `x+y+z=1` `x+2y +4z=p` `x+4y+10z=p^(2)` `Delta = |{:(1,,1,,1),(1,,2,,4),(1,,4,,10):}|` `R_(1) to R_(1)-R_(2),R_(2),R_(2) to R_(2)-R_(3)` `= |{:(0,,-1,,-3),(-,,-2,,-6),(1,,4,,10):}|=0` Since `Delta =0` solutions is not unique The system will have infinite solutions if `Delta_(1)=0 ,Delta_(2) =0 Delta_(3)=0` `Delta_(1)= |{:(1,,1,,1),(p,,2,,4),(p^(2),,4,,10):}|=0` `C_(3) to C_(3)-C_(2)` `Delta_(1)= |{:(1,,1,,0),(p,,2,,2),(p^(2),,4,,6):}|=0` `" or " 1(12 -8) -1 (6p -2p^(2)) =0` `" or " 4-6p +2p^(2) =0` `" or " 2(p^(2) -3p+2) =0` `" or " p^(2) -3p +2=0` `rArr p=1" or "2` Also for these values of `p,Delta_(2),Delta_(3)=0` |
|