InterviewSolution
Saved Bookmarks
| 1. |
The value of a for which the function`f(x)=f(x)={((4^x-1)hat3)/(sin(x a)log{(1+x^2 3)}),x!=0 12(log4)^3,x=0`may be continuous at `x=0`is1 (b) 2 (c) 3 (d)none of these |
|
Answer» `lim_(x->0) (4^x - 1)^3/(sin(x-a)log(1+3x)) = 12(log4)^3` now,`(e^(xln4) - 1)^3/(sin (x a)/(xa) xx log(1 + 3x^2))` `= 1 + (xln4)/1 + (x ln4)^2/(2!) + (xln4)^3/(3!)+ .....` `= ((1+ (xln4)/1 - 1)^3)/(ax log(1+3x^2)` `= (x^3(ln4)^3)/(ax log(1+3x^2)` `= (x^2(ln4))/(aln(1+3x^2) ` `= (ln4)^3/a xx x^2/(ln(1+3x^2))` `= (2x/1)/(1/(1+3x^2)) xx 6x` `= (2x)/(6x) = 1/3` now, `(log4)^3/(3a) = 12 xx (log 4)^3` `a= 1/(12 xx3) = 1/36` `a= 1/36` Answer |
|